ADI KAVI NANNAYA UNIVERSITY, RAJAMAHENDRAVARAM DEPARTMENT OF PHYSICS

COURSE-WISE SYLLABUS

B Sc	Semester: 4	Credits: 4
Course: 5	Modern Physics	Hrs/Wk: 4

Student able learn:

- To Create awareness on the topics of Atomic & Molecular Physics, Quantum mechanics, Nuclear Physics, and Solid state physics.
- To be Explain all the topics of Experiments, Concepts and Derivations to the student.
- Explain the basic principles of quantum mechanics and apply to Atomic, Molecular structure of energy levels etc..
- Motivate all the students to pursue PG courses in reputed institutes and to endow the students withcreative and analytical skills; this will equip them to become entrepreneurs.

UNIT I :

Atomic and Molecular Physics:(12 hrs): Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it,Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect, Experimentalarrangement to study Zeeman effect; Raman effect, Characteristics of Raman effect. Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect.

UNIT II:

Matter waves &Uncertainty Principle:(12 hrs): Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities, Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons and photons (Gamma raymicroscope),Bohr's principle of complementarity.

UNIT III:

Quantum (Wave) Mechanics:(12 hrs): Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height(InfinitePotential Well) and (ii) three dimensional box - tunneling effect.

UNIT IV:

Nuclear Physics:(12 hrs): Nuclear Structure: General Properties of Nuclei, Mass defect, Binding energy; Nuclear forces:Characteristics of nuclear forces- Yukawa's

meson theory; *Nuclear Models*: Liquid drop model, The Shell model, Magic numbers; *Nuclear Radiation detectors*: G.M. Counter, Cloud chamber, Solid State detector; *Elementary Particles*: Elementary Particles and their classification.

UNIT-V:

Nano materials:(7hrs): Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials– (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties),Distinct properties of nano materials (Mention-*mechanical,optical, electrical, and magnetic properties*); Mention of applications of nano materials: (*Fuel cells,Phosphors for HD TV*).

Superconductivity: (5 hrs): Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors

REFERENCE BOOKS

- 1. BSc Physics, Vol.4, Telugu Akademy, Hyderabad
- 2. Atomic Physics by J.B. Rajam; S.Chand& Co.,
- 3. Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.
- 4. Concepts of Modern Physics by Arthur Beiser. Tata McGraw-Hill Edition.
- 5. Nuclear Physics, D.C. Tayal, Himalaya Publishing House.
- 6. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publ.Co.)
- 7. K.K.Chattopadhyay&A.N.Banerjee, Introd.to Nanoscience and Technology(PHILearningPriv.Limited).
- 8. Nano materials, A K Bandopadhyay. New Age International Pvt Ltd (2007)
- 9. Textbook of Nanoscience and Nanotechnology, BS Murthy, P Shankar, BaldevRaj,BB Rathand J Murday-Universities Press-IIM

B Sc	Semester: 4	Credits: 4
Course:	Modern Physics	Hrs/Wk:
5	Lab	4

Details of Lab/Practical/Experiments/Tutorials syllabus: Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- 3. Verification of inverse square law of light using photovoltaic cell.
- 4. Determination of the Planck's constant using LEDs of at least 4 different colours.
- Determination of work function of material of filament of directly heatedvacuumdiode.
- 6. Study of absorption of α -rays.
- 7. Study of absorption of β -rays.
- 8. Determination of Range of β -particles.
- 9. Determination of M & H.
- 10. Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 11. Energy gap of a semiconductor using junction diode.
- 12. Energy gap of a semiconductor using thermistor
- 13. GM counter characteristics
- 14. Study of photo cell characteristics.

Recommended Reference books:

9. Recommended Co-curricular activities:(Co-curricular Activities should not promote copying from text book or from others' work and shall encourage self/independent and group learning)

I. Measurable:

Assignments on: Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Experimental arrangement to study Zeeman effect; Raman effect, Characteristics of Raman effect. Experimental arrangement to study Raman effect, Applications of Raman effect, Wave length of matter waves,; *Nuclear Radiation detectors*: G.M. Counter, Cloud chamber, Solid State detector, Classification of nano materials–(0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties),

Student seminars (Individual presentation of Courses) on topics relating to: Stern- Gerlach experiment, Zeeman effect, Raman effect. Davisson and Germer's experiment, , Heisenberg's uncertainty principle Schrodinger time independent and time dependent wave equations-Derivations, , The Shell model, Magic numbers;,

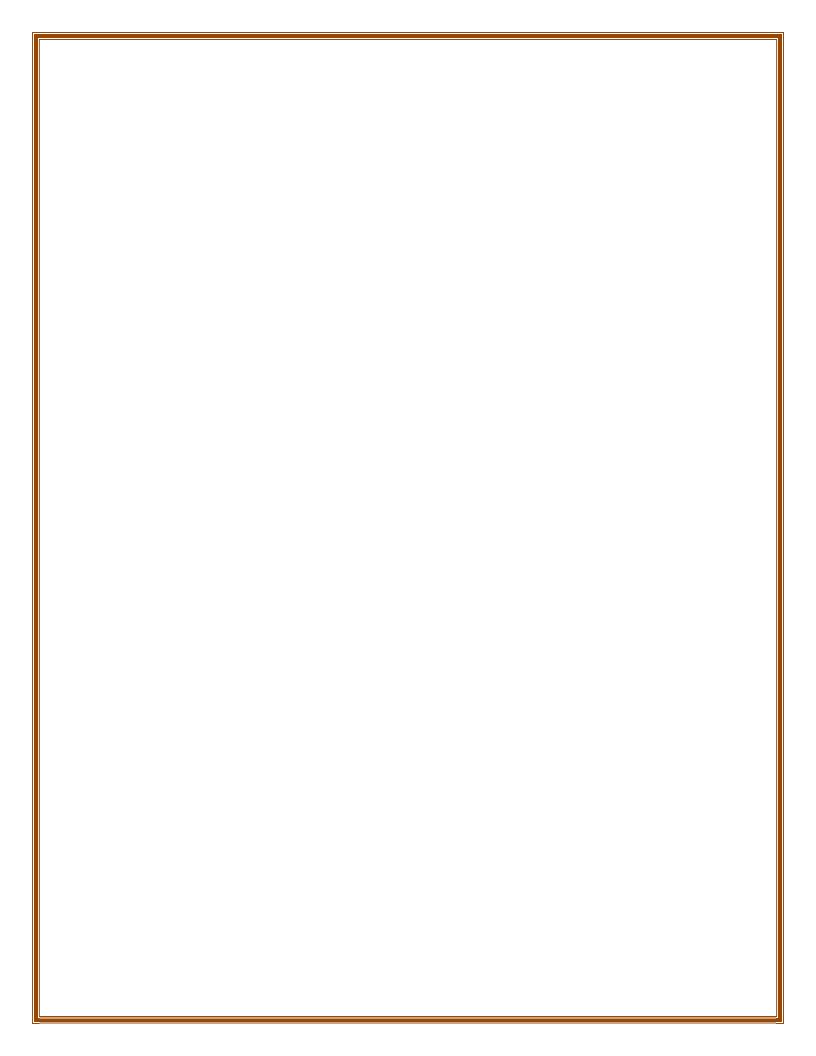
- 8. **Quiz Programmes on**: Zeeman effect, Matter waves, de Broglie's hypothesis, Heisenberg's uncertainty principle for position and momentum& energy and time, Schrodinger time independent and time dependent wave equations-Derivations.
- 9. Individual Field Studies/projects: *Nuclear Radiation detectors*: G.M. Counter, Cloud chamber, Solid State detector, Liquid drop model, Distinct properties of nano materials

10. **.Group**

discussion

on:Properties of matter waves, Davisson and Germer's experiment, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height(InfinitePotential Well), Liquid drop model, The Shell model, Magic numbers

11. Group/Team Projects on: Basic postulates of quantum mechanics,


Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function

J. General

- 12. Collection of news reports and maintaining a record of Course-cuttings relating to topicscovered in syllabus
- 13. Group Discussions on:

14. Watching TV discussions and preparing summary points recording personal observationsetc., under guidance from the Lecturers

15. Any similar activities with imaginative thinking.Recommended Continuous Assessment methods:

